欢迎来到 职场词典网 , 一个优秀的职场知识学习网站!

加入收藏

您所在的位置:首页 > 应届生 > 毕业论文

毕业论文

工程力学论文

分类: 毕业论文 职场词典 编辑 : 职场知识 发布 : 04-08

阅读 :504

  工程力学涉及众多的力学学科分支与广泛的工程技术领域,是一门理论性较强、与工程技术联系极为密切的技术基础学科,工程力学的定理、定律和结论广泛应用于各行各业的工程技术中,是解决工程实际问题的重要基础。对于力学的论文应该怎么写?一起来看看!

  力学计量仪器检定问题探讨

  摘要:力学计量仪器的检定工作是相当的复杂和繁琐的,不管是对操作工作人员还是对仪器设备的要求都是极高的。正如我们所知,它不仅是力学上或是生活上的所代表的那么简单的意义,而无论是对物理学、力学还是科学方面都有着举足轻重的地位,并且在力学计量的标准化方面任重而道远。任何计量仪器的检定都应该通过正规的勘测项目和遵循相应的规则,才能有效做到在适当范围内防止错误的发生,本文针对力学计量仪器检定出现的问题进行探讨分析,并针对性的提出解决问题的方法与措施。

  关键词:力学;力学计量仪器;问题探讨

  无论是在我们学习中还是在我们的生活中,力学计量的使用范围越来越多在最近的几年中更是如此。其中,主要包括对力的值、质量、振动的频率等一些相关的计量测试。在早期力学计量就形成以牛顿力学作为基础,以质量为基本的力学。随着时间的不断的推进,力学计量基本体系都已经发展的比较完善,同时,伴随着科学技术的进步,显示技术以及自动化技术等都被运用到了力学计量仪器检定当中,并充分发挥着自身所具备的价值。

  1力学与力学计量

  力学是有关力、运动和介质的一门基础学科。生活中力学的利用是十分广泛,涉及面较广,比比皆是。因此,力学计量作为力学的计量学也随着力学的计量学也随着力学的发展而被人们发现、研究。在当今社会,涌现出许多科技先进的力学计量仪器,有利于帮助我们更加有效地获取更为准确的数据,准确的检测。科学家与研发人员通过不断进步的先进的科学技术与计算机技术的运用,将其融入力学计量仪器中,这样有利于大幅度提升力学计量仪器检定工作的各方面质量,也保证了实验数据的准确性。一般,在我们习惯性的思维中,计量的概念就是物理或者力学中的单位符号,事实上却不是如此。目前,大部分的国家都拥有完善的力学计量体系,而力学计量学运用也随着变得更加广泛。不同的国家有不同的计量标准,不同的计量标准计算出的数据就会呈现出不一致,这对力学检测来说是一个大问题。相反,当计量检定有一定的标准,就能保证计量的准确性,实现力学计量的自身价值。事实上,我们平时所说的一致性就是对其力学计量法理念上的一致性。可以说将力学计量法国际标准化的路程仍很遥远。

  2力学计量仪器检定的基本理念

  有关力学计量仪器检定的基本理念主要包括五个方面:振动计量仪器检定的基本理念、力值计量的基本理念、流量计量仪器检定的基本理念、压力计量仪器检定的基本理念和质量计量仪器检定的基本理念。对于大多数人来说振动计量仪器检定不是陌生的,振动一般都是指某种物体由于速度转动太快而使位置变换、或是速度的频率等来解释振动。对于振动的检测的结果,其精准度是直接来源于力学计量结果。力值计量在过去的18世纪60年代,力值计量主要传递和测试的使用都是由水银箱的模式去表达,但是其准确度不能保证。如今,随着科学技术的进步,力值的规范标准设备可以分为多种形式去检定。流量计量仪器检定就是依据一定的流动区,将流量计量进行合适的分割,具体可以分为水、气等一些液体流量计算的类型。并且流量的质量要进行严格的检测,在一些具体的计量方法上面需要保持一致性。目前,流量计算分为动态流量标准的计算和极端计量值的具体规范研发。压力计量仪器检定可分为动态与静态的两种形式,其中,动态计量仪器检定可以分成为激波管道与正弦两种。静态检定都包括对比检定以及砝码检测的这两种形式。正如前文所阐述的,质量是在力学计量仪器检定中最基本的原则,它也是属于国际基本计量单位,国际上一般都是使用千克的形式表示。

  3力学计量仪器检定时需要注意的问题及解决措施

  在日常的力学仪器检定的过程中,难免会出现一些问题,需要我们针对其问题,制定相关的解决措施。一是统一计量仪器检定的方法。根据力学仪器检定的现状来看,其与我们日常生活紧密相连,并不只是物理学的要关注的问题。所谓的计量法的一致就是通过计量的方法的统一,从而因而不同的国家、不同的计量的标准而带来的计量检定的误差而产生不必要的矛盾。因此,只有实现计量标准的统一性,才能提高我国的计量标准度,从而更好的发挥力学计量的价值。二是关注计量仪器检定器具体性能。计量仪器检定工作的基本就是检测实体的单位,用有效的进行的数据分析和判断相关的物体的性能。一般来讲,计量仪器的检定工作必须是相关的权威机构负责,主要的实施是相关的机构盖章并给予正规合法的手续。根据我国法律规定,计量仪器工作检定者必须经过相关的部门认可或是批准后才能进行下一步的工作。力学计量工作者,一旦发现问题,应当及时向相关领导发现,及时解决并处理。三是正确处理好计量检定的两种方法。

  在当今国际上所拥有的计量检定最为有效的方法主要有两种即部分检定和整体鉴定法。不过现在大多数情况下使用就是整体鉴定法,主要是因为它拥有执行容易、成效高、速度快等诸多优点。与此同时,他还能够把结果进行二次重检,最后综合两次检定的结果得出一个更为可靠的数据。但是,在操作整体检定法时,如果想要取得一个相对来说准确率最高的结果,可以使用多次重复试验的手段。但是他也拥有自身无法克服的矛盾,如果负责检定的设备在之前就有着不达标或由于品质达不到检定仪器所必须的高度时,就会严重削弱检定结果的准确性尤为重要,因此,在进行检定实验时,起初要保证设备的完好没有瑕疵,因为设备的品质高低有时直接决定最后结果的精确性,若是仪器存在纰漏其检定结果的准确性就还有待考证。

  4结语

  力学是一门探讨物质机械运动规律的学科,它不仅是我们学习中的基础学科,还是一项重要的生活学科。我们在生活中能接触力学的机会之多,其涉及范围之广,都是无法用数据来衡量的。作为力学仪器中重要组成部分的力学计量仪器,它在力学的运用方面主要起着传导的媒介的作用。力学和力学计量对我国物理科技等方面的发挥着重要作用,探讨其力学计量检定中可能出现的问题,并提出解决的措施,使其力学计量仪器检定工作顺利有效的实施仍然需要我们的不懈努力。

  参考文献

  [1]崔磊.力学计量仪器检定应注意的几个问题[J].科技资讯,2012.

  [2]杨家润.力学计量仪器检定相关问题分析[J].产业与科技论坛,2014.

  [3]邵俊杰.力学计量仪器检定中相关问题的探讨[J].科技致富向导,2012.

  工程力学理论分析

  结构理论分析的步骤是首先确定计算模型,然后选择计算方法。

  土力学在二十世纪初期即逐淅形成,并在40年代以后获得了迅速发展。在其形成以及发展的初期,泰尔扎吉起了重要作用。岩体力学是一门年轻的学科, 二十世纪50年代开始组织专题学术讨论,其后并已由对具有不连续面的硬岩性质的研究扩展到对软岩性质的研究。岩体力学是以工程力学与工程地质学两门学科的融合而发展的。

  从十九世纪到二十世纪前半期,连续体力学的特点是研究各个物体的性质,如梁的刚度与强度,柱的稳定性,变形与力的关系,弹性模量,粘性模量等。这一时期的连续体力学是从宏观的角度,通过实验分析与理论分析,研究物体的各种性质。它是由质点力学的定律推广到连续体力学的定律,因而自然也出现一些矛盾。

  于是基于二十世纪前半期物理学的进展 ,并以现代数学为基础,出现了一门新的学科――理性力学。1945年,赖纳提出了关于粘性流体分析的论文,1948年,里夫林提出了关于弹性固体分析的论文,逐步奠定了所谓理性连续体力学的新体系。

  随着结构工程技术的进步,工程学家也同力学家和数学家一样对工程力学的进步做出了贡献。如在桁架发展的初期并没有分析方法,到1847年,美国的桥梁工程师惠普尔才发表了正确的桁架分析方法。电子计算机的应用,现代化实验设备的使用,新型材料的研究,新的施工技术和现代数学的应用等,促使工程力学日新月异地发展。

  质点、质点系及刚体力学是理论力学的研究对象。所谓刚体是指一种理想化的固体,其大小及形状是固定的,不因外来作用而改变,即质点系各点之间的距离是绝对不变的。理论力学的理论基础是牛顿定律,它是研究工程技术科学的力学基础。

  固体力学包括材料力学、结构力学、弹性力学、塑性力学、复合材料力学以及断裂力学等。尤其是前三门力学在土木建筑工程上的应用广泛,习惯上把这三门学科统称为建筑力学,以表示这是一门用力学的一般原理研究各种作用对各种形式的土木建筑物的影响的学科。

  在二十世纪50年代后期,随着电子计算机和有限元法的出现,逐渐形成了一门交叉学科即计算力学。计算力学又分为基础计算力学及工程计算力学两个分支 ,后者应用于建筑力学时,它的四大支柱是建筑力学、离散化技术、数值分析和计算机软件。其任务是利用离散化技术和

  数值分析方法,研究结构分析的计算机程序化方法,结构优化方法和结构分析图像显示等。

  如按使结构产生反应的作用性质分类,工程力学的许多分支都可以 再分为静力学与动力学。例如结构静力学与结构动力学,后者主要包括:结构振动理论、波动力学、结构动力稳定性理论。由于施加在结构上的外力几乎都是随机的,而材料强度在本质上也具有非确定性。

  随着科学技术的进步,20世纪50年代以来,概率统计理论在工程力学上的应用愈益广泛和深入,并且逐渐形成了新的分支和方法,如可靠性力学、概率有限元法等。

下一篇:珍爱生命的议论文 下一篇 【方向键 ( → )下一篇】

上一篇:交通工程建设的施工技术 上一篇 【方向键 ( ← )上一篇】